定点を通る接線の本数(応用編①)

定点を通る接線の本数の問題については、数Ⅱでも何度かやっていますが、数Ⅲでも頻出問題の1つです。今回はそんな入試問題を研究してみましょう。

問題 a は実数とする。曲線 $y=e^x$ 上の各点における法線の内で、点 P(a,3) を通るものの個数を n(a) とする。 n(a) を求めよ。但し、必要ならば $\lim_{x\to\infty}\frac{x}{e^x}=0$ と用いても良い。

問題 この種の問題は解き方の定石があって、その通りやれば必ず解けます。では、始めましょう。

まず、 $y=f(x)=e^x$ とおくと、 $f'(x)=e^x$ 接点の座標を (t,e^t) とすると、 $f'(t)=e^t$ より、法線の方程式は $y-e^t=-\frac{1}{e^t}(x-t)$ これが点 P(a,3) を通るので、 $3-e^t=-\frac{1}{e^t}(a-t)$ この式をa について解くと $a=e^{2t}-3e^t+t$ となる。このとき、y=a と $y=e^{2t}-3e^t+t$ とおいて、2つのグラフの交点の数を考えれば良い。

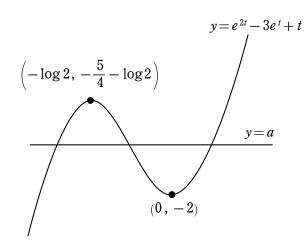
$$y=e^{2t}-3e^t+t$$
 より、 $\frac{dy}{dt}=2e^{2t}-3e^t+1$ $\frac{dy}{dt}=0$ とおいて解くと、 $(2e^t-1)(e^t-1)=0$ よって

$$e^t = \frac{1}{2}$$
,1 より、 $t = \log \frac{1}{2}$,0 = $-\log 2$,0 このとき、 $y = e^{2t} - 3e^t + t$ の増減表は以下のようになる。

	t	•••	$-\log 2$	•••	0	•••
	$\frac{dy}{dt}$	+	0	ı	0	+
•	у	1	$-\frac{5}{4} - \log 2$	1	-2	1

また、
$$\lim_{x \to -\infty} (e^{2t} - 3e^t + t) = -\infty$$
, $\lim_{x \to \infty} (e^{2t} - 3e^t + t) = \infty$ となり

y=a と $y=e^{2t}-3e^t+t$ のグラフの関係は以下のようになり、n(a) については、次のように場合分け出来る。



$$n(a) = \begin{cases} 1 \left(a < -2, -\frac{5}{4} - \log 2 < a \right) \\ 2 \left(a = -2, -\frac{5}{4} - \log 2 \right) \\ 3 \left(-2 < a < -\frac{5}{4} - \log 2 \right) \end{cases}$$