(共通テスト対策(5))

問題 k を実数として、x の整式 P(x) を $P(x) = x^3 + kx^2 + (2k+1)x + k + 2$ とする。3 次方程式P(x) = 0 は一つの 実数解と異なる二つの虚数解 α 、 β をもつとする。

(1) どのような k の値に対しても P(- | P |) = 0 であるから、因数定理により

2次方程式Q(x)=0は異なる二つの虚数解をもつので、kのとり得る値の範囲はx

 α , β は Q(x) = 0 の解であるので、解と係数の関係により、 $\alpha^2 + \beta^2$ は k を用いて

$$\alpha^2+\beta^2=k^2-$$
 キ $k-$ ク と表される。したがって, $\alpha^2+\beta^2$ は $k=$ ケ で最小値 コサ をとることが

わかる。また、
$$k=$$
 ケ のとき $\alpha^2\beta^2=$ シス 、 $\alpha^4+\beta^4=$ セソ である。

以下
$$\alpha = \frac{-\boxed{\cancel{\beta}} + \sqrt{\cancel{f} \cancel{y}} \, i}{2}, \; \beta = \frac{-\boxed{\cancel{\beta}} - \sqrt{\cancel{f} \cancel{y}} \, i}{2}$$
 とし, $X = \alpha + \beta i, \; Y = \alpha - \beta i$ とする。

 X^4+Y^4 を α 、 β を用いて表そう。 X^4 、 Y^4 のそれぞれに、二項定理を用いて整理する

と
$$X^4+Y^4=$$
 $\overline{\tau}$ $(\alpha^4+\beta^4)-$ トナ $\alpha^2\beta^2$ となる。

このとき,
$$\alpha^2\beta^2$$
= $\boxed{$ シス $}$, $\alpha^4+\beta^4=\boxed{}$ セソ $]$ であるから, X^4+Y^4 の値は $\boxed{}$ ニヌネノ $]$ である。

解答

(1)
$$P(-1) = (-1)^3 + k \cdot (-1)^2 + (2k+1) \cdot (-1) + k + 2 = -1 + k - 2k - 1 + k + 2 = 0$$

よって、どのような k の値に対しても $P(-^{7}1)=0$

このとき, 因数定理により

$$P(x) = (x+1)\{x^2 + (k-1)x + k + {}^{1/2}2\}$$

$$Q(x) = x^2 + (k-1)x + k + 2$$
 であり、2 次方程式

$$Q(x) = 0$$
 は異なる 2 つの虚数解をもつから、判

別式を
$$D$$
とすると $D<0$

$$D=(k-1)^2-4(k+2)=(k+1)(k-7)$$
 であるから $(k+1)(k-7)<0$

2次方程式 Q(x)=0 の解と係数の関係により $\alpha+\beta=-(k-1)$, $\alpha\beta=k+2$

このとき
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \{-(k-1)\}^2 - 2(k+2)$$

= $k^2 - {}^{\sharp}4k - {}^{\flat}3 = (k-2)^2 - 7$

したがって、 $\alpha^2 + \beta^2$ は $k = {}^{r}2$ で最小値 ${}^{2+}$ 0 そとる。

また,
$$k=2$$
 のとき $\alpha+\beta=-1$, $\alpha\beta=4$

よって
$$\alpha^2\beta^2 = (\alpha\beta)^2 = 4^2 = {}^{\flat \lambda}16$$

$$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2 = (-7)^2 - 2 \cdot 16 = 2717$$

(2) k=2 のとき $Q(x)=x^2+x+4$

$$P(x)=0$$
 の異なる 2 つの虚数解は、 $Q(x)=0$ の解で
$$x=\frac{-^{\beta}1\pm\sqrt{^{\beta\gamma}15}\,i}{2}$$

また, 二項定理により

$$\begin{split} X^4 &= (\alpha + \beta i)^4 = {}_4\mathrm{C}_0\alpha^4 + {}_4\mathrm{C}_1\alpha^3(\beta i) + {}_4\mathrm{C}_2\alpha^2(\beta i)^2 + {}_4\mathrm{C}_3\alpha(\beta i)^3 + {}_4\mathrm{C}_4(\beta i)^4 \\ &= \alpha^4 + 4\alpha^3\beta i - 6\alpha^2\beta^2 - 4\alpha\beta^3 i + \beta^4 \\ Y^4 &= (\alpha - \beta i)^4 = {}_4\mathrm{C}_0\alpha^4 + {}_4\mathrm{C}_1\alpha^3(-\beta i) + {}_4\mathrm{C}_2\alpha^2(-\beta i)^2 + {}_4\mathrm{C}_3\alpha(-\beta i)^3 + {}_4\mathrm{C}_4(-\beta i)^4 \\ &= \alpha^4 - 4\alpha^3\beta i - 6\alpha^2\beta^2 + 4\alpha\beta^3 i + \beta^4 \end{split}$$

よって

$$\begin{split} X^4 + Y^4 &= (\alpha^4 + 4\alpha^3\beta i - 6\alpha^2\beta^2 - 4\alpha\beta^3 i + \beta^4) + (\alpha^4 - 4\alpha^3\beta i - 6\alpha^2\beta^2 + 4\alpha\beta^3 i + \beta^4) \\ &= {}^{\bar{\tau}}2(\alpha^4 + \beta^4) - {}^{\vdash \tau}12\alpha^2\beta^2 \end{split}$$

(1) より、
$$\alpha^2\beta^2 = 16$$
、 $\alpha^4 + \beta^4 = 17$ であるから

$$X^4 + Y^4 = 2 \cdot 17 - 12 \cdot 16 = -3 \cdot 7 - 158$$